
Newly Created
ObjectsContainers

Objects:

Orgs
Nodes

Cookbooks
Containers
Sandboxes

Clients
Users

Groups
Data Bags

Data Bag Items
Roles

Environments
Policies

Policy Groups

Actors:

Users
Clients

Give Defaults

Legend:

Object: An entity that can be acted upon
Actor: An entity that can make actions

Group: Collections of actors or other groups

ACL: Access Control List. Stores ACES for all CRUDG permissions
ACE: Access Control Entity. Lists of actors and groups who have the

given permission and can therefore take the given action.
CRUDG: Create, Read, Update, Delete, Grant

Containers are special objects that contain the default permissions used in the system. They
can be thought of as the prototypes for all objects in the system. Any new object that is
created inherits the permissions from its container. So for example, a new user inherits its
default permissions from the user's container.

Modifying a container's permissions changes the default permissions all new objects
of that container type. It does not change the permissions of any object that already exists
of that type.

The Chef Server permission system is made of of the following:
Objects, Actors, Groups, Containers, ACLs, and ACEs.

ACL:
Create
Read

Update
Delete
Grant

The Objects and Actors in the system are:

All Actors are also Objects (meaning the actors can be acted upon
and have their own ACLs).

Each Object contains an ACL (Access Control List).
This ACL contains an entry for each of the CRUDG permissions
(Create, Read, Update, Delete, Grant).
Each permission then contains a list of ACEs (Access Control Entities).
These ACEs are lists of Actors and Groups.

A Group is a entity that contains lists of Actors and other Groups.
It is a way to link Actors in the system that should share the same
permissions on an Object. An example is the Admin group.

Groups can contain other Groups. When resolving permissions,
the system just walks down the chain until it reaches the end and
finds the Actors contained in the Group.

ACE User: Alice

User: Bob

Group: Admin User: Carol

The Chef Server permission system is a DAC (Discretionary Access Control) system implemented
using ACLs (Access Control Lists). This is in contrast to a MAC (Mandatory Access Control)
system.

A DAC system is one where the actors of the system can also grant or pass on permissions to other
actors or objects of the system. In a MAC all permissions are centrally controlled. This answer is
simplified and of course these types of systems blur in actual use. If you want further information,
the DAC and MAC pages on Wikipedia are suggested reading.

We often call the Chef Server permission system a RBAC (Role Based Access Control) system,
but this isn't technically true. In an RBAC system permissions are defined based on specific
operations (roles) within the system. The classic example is the permissions a bank teller has
as compared to the permissions that a bank manager has. By contrast, in an ACL system, the
objects themselves are assigned the permissions (so to strain the analogy, the bank vault would
store if the bank teller and/or manager could open it, vs. the teller or manager having the permission
to open the bank vault).

An ACL system that has groups can mimic RBAC, so it is therefore possible for the Chef Server to
implement a full RBAC system. At the moment however it does not implement the permissions in
such a way as to mimic true RBAC. Our use of the term RBAC for describing the permissions system
is inaccurate.

Default Groups:

admins
billing-admins

clients
users

There are four default groups created for any
Chef server.

Note that while billing-admins exists as a group
in every Chef server, it only has significance
and is used in Hosted Chef. In all other cases
it can be ignored.

As the Chef server changes over time it is possible
the default groups will also change, although this
tends to happen infrequently.

Default Containers:

clients
containers
cookbooks

data
environments

groups
nodes
roles

sandboxes
policies

policy_groups
cookbook_artifacts

There are many default containers in a Chef server. These
tend to change as new functionality is added to the Chef server.
For instance, the policies and policy_groups containers are
relatively new additions to support the policy file functionality.

Global Objects

Orgs
Users

There are two special types of objects in the system: orgs and users. They are special
in that they are global. Everything else in the system is scoped to an org.

What this means is that when an org is created, any new object created under that
org will only be visible under that org, with the exception of users.

Because users are global, this is why users have to be invited to and
associated with orgs, since users are not scoped to an org.

Global Objects
Containers

What kind of permissions system does the Chef server implement?

Building Blocks ACLs, ACEs, and Groups

When a user first creates an org, the org is created from the org container and some
initial setup is done to ensure the default groups and containers are in place.
We then rely on Chef Manage or the chef-server-ctl org creation
commands to ensure the user who created the org is appropriately associated with the org
and added to the org's admin group.

Org Creation

USAGS

USAGS (User Specific Association Groups) are a concept that is mentioned from time to time
with the Chef server permission system. The idea behind a USAG is that it is a group that
contains only a single user. So if we had a user Bob, there would exist a group, let's say it's called
Bob's Group, that contains only Bob.

Why would USAGS be useful? To answer that, consider how the system currently works.
Users are directly added to the ACLs of objects that they have permission to act upon.
If a user then needs to be denied access to an object they are removed from the appropriate ACL.
Consider though: what if a user needs to be denied access to an entire org and all objects under it?

It's tempting to say just delete the user, but remember that a user is a global object. Users might
exist in more than one org, so the user can't simply be deleted.

Because of the way the ACL system works, by building up permissions, the only way to deny a user
access to all objects under an org is to find and remove the user from the ACLs of all the objects
under the org.

USAGS are a potential answer to this problem. The user would be assigned to their specifc group,
(the USAG) and then when the user needed permissions on an object, instead of adding the user
directly, the USAG would be added to the ACLs of the object instead.

This would have the effect of giving the user the permissions needed, but in the event a user
needed to be denied all permissions on an org a simple solution now exists: delete the USAG.
Once the USAG is deleted the user will no longer be linked to any ACLs and will have no more
permissions.

USAGs, knife-acl, and Manage

Unfortunately, USAGs were never fully implemented in the system. Some places attempted
to make use of USAGs, while others did not. This meant the fully power of USAGs was never
realized. This is also why tools such as knife-acl and Manage clash and could not be used together.
knife-acl was attempting to use USAGs while Manage was not. This resulted in competing
paradigms being used with difficult to understand results in practice.

Updates to these systems will hopefully resolve this conflict in the future.

Code

The Chef server permission system is primarily implemented in three places:

oc_chef_authz
oc_bifrost

oc_chef_wm

All of these systems are part of the Chef server and can be found in the Chef server
repository on GitHub. oc_chef_authz and oc_chef_wm are part of Erchef, while oc_bifrost
(often just referred to as bifrost) is a separate component that lives along side Erchef in the
Chef server repo.

The main entry point for ACL modification starts at oc_chef_wm_acl.erl and
oc_chef_wm_acl_permission.erl. Consult the dispatch.conf file in the priv directory under
oc_chef_wm for the exact routes that are used.

oc_chef_wm calls into oc_chef_authz, which then calls into oc_bifrost.

For full implementation details it is best to consult the code and corresponding tests.

Document Versions

v1.0 - Mark Mzyk - compiles initial version
v1.1 - Mark Mzyk - add in missing object types; expand code explanation by adding in oc_chef_wm;
 add oc-id section
v1.2 - Mark Mzyk - clarify details of user association in org creation section; fix spelling of contrast;
 add section clarifying which server versions this doc applies to;
 add note to containers section about needed permission on container to create
 or list objects
v1.3 - Mark Mzyk - add container as an object in object list, it was inadvertently left off

oc-id

How does oc-id factor into this picture?

oc-id stands for opcode-identity. oc-id ships as part of the Chef server. It is an OAuth2
provider and is intended to be the place that a Chef user will manage their identity.

oc-id does not factor into the permissions here. Instead the way it is is used is that other
applications that interact with the Chef server, such as the Supermarket and Analytics,
call out to oc-id when a user signs on. The user enters their login information into oc-id,
which then verifies this with the Chef server auth system. Once verified, oc-id issues a token
to the calling application and the application then uses this token as a user's authorization.

This allows the Chef server to act as a central auth point without each application needing
to provide their own auth system. oc-id however is a blunt instrument. It simply provides a yes
or no answer on if a user is who they say they are to the Chef server. It does not provide any
of the finer grain permissions that the Chef server uses to any of the other applications.

TODO:

Verify and add details on:

- In addition to the container permissions, the
actor who created an object is also inserted into all 5 ACEs of
the new object's ACL. An exception to this rule are validator
clients.

- May want to add a section on the "pivotal" user

- Include section on ORGNAME_global_admins (this was possibly recently renamed):

ORGNAME_global_admins is woefully misnamed. It is a group that we create when we construct a
new organization. It contains the admins group (currently, soon it will contain the users group as well,
this is what I'm working on). Anytime we add a user into an organization, we add the
 ORGNAME_global_admins group into the READ ace for that user.
This allows admins in the org to read the user objects in their org. The change I'm making will add
the users group into that group as well, which will mean that users within the same org will be able
 to see each other's user objects

https://github.com/chef/chef-server/pull/244

- Document exactly where USAGS are used in the system

- Add a diagram that shows the entire system - chef server, oc-id, analytics, supermarket, etc,
and how it all fits together

Chef server versions using ACLs

The permissions system talked about in this doc pertains to Chef server 12 and later.

This same permissions system also applies to the older Enterprise Chef server. It does not apply
to any version of the old open source Chef server, which used a much simplified permission system
without ACLs.

As of this writing, the code that implements this permission system in Chef server 12 is entirely in
Erlang. Previous version of the Enterprise Chef server used a version of the ACL system written in
Ruby.It should be noted that the permissions on a container determine if an actor can list or

create objects of that container's type. For example, a User would need the read permission on
the roles container to list roles and the create permission on the roles container to create a role.

https://github.com/chef/chef-server/pull/244

